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from these measured quantities. 

(td)(N1-N2) = N1(h)-N2(t2). (A2) 

The mean life r, characteristic of the decay process, 
is then obtained as a solution of Eq. (Al). 

Let 8 be the standard statistical uncertainty on (fo). 
This may be expressed directly in terms of measured 

I. INTRODUCTION 

WITH the exception of selection rules, the under
lying physical principles of elementary-particle 

physics are currently being expressed in terms of 
analyticity properties of transition amplitudes in a 
manner consistent with unitarity. In fact, for strongly 
interacting systems, the principle of maximal analyticity 
in linear momentum has been frequently invoked.1 The 
resulting description, i.e., the Mandelstam representa
tion and unitarity, is incomplete at least to the extent 
that the behavior of the scattering amplitude at infinity 
remains undetermined. Complex angular momentum 
may be useful in this respect since Regge2 has shown 
that the meromorphicity and asymptotic boundedness 
of the partial-wave amplitudes continued to complex 
/ provide boundary conditions for the scattering ampli
tude at infinity. Although Regge's work is for potential 
scattering and relativistic proofs of certain aspects of 
this program are still lacking, it is desirable, neverthe
less, to investigate the consequences of this approach 
since the equations obtained for the scattering ampli
tudes are simple in form and are subject to experimental 
verification. 

These and other considerations have led us to examine 

* Supported in part by the National Science Foundation. 
1 S. Mandelstam, Phys. Rev. 112, 1344 (1958). 
2 T. Regge, Nuovo Cimento 14, 951 (1959). 
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quantities, viz; 

52(N1-N2)
2 

+xim2)- «*2»
2+ «/2>-</,»2i (A3) 

where ((^)2)=the mean of the squared lifetime of all 
events observed during the ith. interval T. 

a process in which both strong and electromagnetic 
interactions enter, namely the photoproduction of pions. 
The basic assumption is that the particles mediating the 
strong interaction correspond to certain Regge tra
jectories in the complex / plane. 

Our main purpose is to demonstrate the existence of 
generalized Pomeranchuk relations for the photoproduc
tion of pions. These relations do not necessarily pertain 
to total cross sections of particle and antiparticle re
actions, as did the original Pomeranchuk theorems. 
Instead, it is recognized that the fundamental mecha
nism responsible for the Pomeranchuk theorems, namely 
a dominant Regge trajectory, may also be the author of 
other asymptotic symmetries. Wagner and Sharp,3,4 for 
instance, have discussed such asymptotic relationships 
between the differential cross sections for the direct and 
crossed channels of several reactions. For photoproduc
tion the equality of the differential cross sections for the 
direct and crossed channels is guaranteed at all energies 
by invariance under charge conjugation. We, therefore, 
turn to the particular charge configurations present in a 
given channel, and it is found that they satisfy asymp
totic symmetries of this type. 

The general plan of the paper is as follows. In Sec. II, 
the basic kinematics are outlined and the amplitudes 

3 W. G. Wagner and D. H. Sharp, Phys. Rev. 128, 2899 (1962). 
4W. G. Wagner, Phys. Rev. Letters 10, 202 (1963). 
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The photoproduction of pions, y-\-N —> 7r+iV, is examined from the standpoint of the Regge pole hypothe
sis and the Mandelstam representation. The asymptotic behavior of the forward scattering amplitudes is 
determined in terms of the Regge trajectories of the Y + X —* N-\-N channel. The p, <£, and co trajectories are 
included in the description of the photoproduction of neutral pions, whereas only the p and x trajectories 
contribute to the photoproduction of charged pions. In the case of backward scattering, asymptotic rep
resentations of the scattering amplitudes are controlled by the trajectories of the y+N —> ir-\-N channel by 
crossing. Finally, generalized Pomeranchuk relations are established for the differential cross sections in 
the forward and backward directions for the various charge configurations of the photoproduction channel. 
In particular, we have the following interesting results: (1) The differential cross sections for y-{-p —> n-\-w+ 

and y-\-n—> p-\-iT are asymptotically equal in the forward and backward directions; (2) the differential 
cross sections for y-\-p —> p-\-ir° and y-\-n —> w+7r° are asymptotically equal in the backward direction. 
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satisfying the Mandelstam representation are intro
duced and related to the angular momentum expansions 
of channel II , y+ir —> N+N. The notation and results 
of Ball5 are used extensively. In Sec. I l l , we summarize 
the approach that allows a description in terms of com
plex angular momenta. In Sec. IV, we discuss the poles 
of the eigenamplitudes for channel I I . Asymptotic 
expressions for the scattering amplitudes are obtained 
in Sec. V. 

II. KINEMATICS 

Associated with this problem are three reactions: 

y+N^w+Nt] 

y+T-^N1+N2; 
and 

y+N2-*ir+Ni, 

which we designate as channels I, I I , and III , respec
tively. Since channel I I I is the charge conjugate of 
channel I, if the subscripts are interchanged, it is not 
discussed in detail in this section. Conservation of 
four momentum in channel I is written as 

K+P1=Q+P2, (2.1) 

where K, Ph Q, and P 2 refer to the y, Ni, ir, and 
N2, respectively. In the barycentric system we have 
the relations, K=(K,k)y P i = ( - K , £ i = [ ^ 2 + £ 2 ] 1 / 2 ) , 
Q= (Q, « = [? 2 +l ] 1 / 2 ) , and P 2 = ( - Q , £ 2 = [g*+itf 2]1 /2), 
where k= |K | and q= | Q | . For channel I I , Pi and Q 
have negative components so that P i ' = — P i and 
Q'= — Q refer to the outgoing antinucleon and the in
coming pion, respectively. The constraint expressed by 
Eq. (2.1) can be written in terms of the physical 
variables of channel I I as 

K+Q^PS+P,, (2.2) 

where i r = ( K ^ ) , e , = ( - K , a ; = [ ^ 2 + l ] 1 / 2 ) , P / = ( - P 2 , 
E=£p2+M2J/2), P 2 = ( P 2 , E=[p*+M*Ji*), and k', p 
are the magnitudes of K, P2, respectively. 

We define a transition matrix element T in channel I 
by the equation 

S=i(2ir)-H{K+P1-Q-P2) 

XM(4E1E2ko^)~1^u(P2)Tu(P1) (2.3a) 

and in channel I I by the equation 

5= i (27 r ) - 2 5( iT+<3 , -P / -P 2 ) 
XM"(4E2^ ,aJ)-1/2^(P2)P^(P10, (2.3b) 

where u(P2) is a positive energy Dirac spinor, v(P±) is 
a charge conjugate spinor, v(Pi) = Cu~T(Pi), CyJC~x 

= — yu, and CT=—C. Chew, Goldberger, Low, and 
Nambu6 have shown that the most general form for T 

5 J. S. Ball, Phys. Rev. 124, 2014 (1961). 
6 G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu, 

Phys. Rev. 106, 1345 (1957). 

is given by 
T^g^T^+g^T^+g^T^ (2.4a) 

and 

r c + . - , o ) = £ OJBnt+---*\ (2.4b) 

where g/3C+) = ^ 3 , &S (~" )==![T/9,T8], ^ ( 0 ) = T^, and 0 is the 
isospin subscript for the pion. The Ow's are the gauge 
invariant spin matrices used in Refs. (5) and (6)7: 

0i=iyb7'eyK, (2.5a) 

02=Uyh{t-l)-l{P-eQ'K-P'KQ-e), (2.5b) 

Oz=-y5(y€Q.K-yKQ-e), (2.5c) 

O^-y^yeP-K-yKP-e), (2.5d) 

where e is the photon polarization vector, P = J ( P i + P 2 ) , 
and t is defined by Eq. (2.6b). The ZVs are those ampli
tudes which have been shown by Ball to be free of 
kinematical singularities. They, therefore, admit of a 
Mandelstam representation and are functions only of 
the variables s, t, u, which we define as 

s=-(Pl+Ky) (2.6a) 

t=-(Q-K)\ (2.6b) 

U=-(F2-K)\ (2.6c) 

The satisfy the relation s+u+t=2M2+l. The physical 
interpretation of these variables in the barycentric sys
tem of the indicated channel is given below: 

s=(E1+k)*=(Es+u)*9 (2.7a) 

t=l-2a>k+2qkz, (2.7b) 

u=M2-2E2k-2qkz, (2.7c) 

for channel I, and for channel I I , 

s=M2-2Ek,-2pk'z'y (2.8a) 

t=(2E)2=(a>+kfy, (2.8b) 

u=M2-2Ek'+2pk'z', (2.8c) 

where z—Q-K and zr~P2-K are the cosines of the 
production angles for channel I and II , respectively. 

We define the 2X2 spin matrices, # and G, by means 
of the following scalar products: 

Mu(P2)Tu(P1) = Ms)lf2Xf(N2)^x(N1) (2.9a) 

for channel I, and for channel II , 

MuiPjTviP^^Mty^xHNdGxiNO, (2.9b) 

where the x's are Pauli spinors.8 The differential cross 
7 The matrices On are related to the matrices Mn of Refs. 

5 and 6 as follows: Oi = Mh 02 = 2(t-l)~1M2, Oz=-Mh and 

8 We define G such that x(N) = — ( i ) should be used in Eq. 

(2.9b) when v(Pi) corresponds to an antinucleon spinning up and 

x(N) — ( o )) when the antinucleon is spinning down. 
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section for channel I is simply related to tf as follows: 

d*/da=(q/k)Z \xWsxW012, (2.10) 

and similarly for channel II. We choose to write # and 
G in the forms 

$i = ~ 
8TT\A 

)/Et+M\ 

XEO+MJ 

X 
-2(sV2+M) 

t-1 
B2—Bz-\-*W]. (2.13d) 

and 

*J— 2-J -*^n ^n 

G=Z Ln
UGn, 

(2.11a) 
The angular momentum decomposition of these 

amplitudes is found as in Ref. 6 to be 

(2 lib) * 1 = E {[(/- | )M /_1 / 2+E J_1 / 2]PV+ i /2 

where Ln* and Ln
u are denned as in Ref. 5 to be, 

L? = ur-l, L2
T=V'QvKXe, 

L1
1I=P2-Z, Ltn=i*-PtXt, 

L 3
n =w-ivVi£xa, L,u=w'KXe. 

+ [ ( /+ ! )^ + l / 2+£ / + l / 2 ]PVl /2} ; 

-1/2 

+MJ+mPrJ+112} : 

*2 = E {( /+J)^- l /2PV-l /2 
J= l /2 

(2.14a) 

(2.14b) 

^3= E {[_Ej„1/2-Mj-1/2]P"j+1/2 
J=3/2 

+ [ E w / 2 + M / + 1 / 2 ] P , V i / 2 } , (2.14c) 

Substituting Eqs. (2.4b) and (2.11b) into Eq. (2.9b) ^= ^ {[_Mj-ll2-Ej„V2~]P"j-
and using the linear independence of the Ln

11, we obtain jr=8/2 
•1/2 

jg1 =[167rV//a- l)](^3+G4) , 

-8TT / (J-4M2)1/2 

(2.12a) 

52=-
(^-4Jf2)1/2 ( f t -

2M+V* 
-G, 

Vt 

(t-4M2)l/2 

B*=-
lfay/t 

B,= 

{t-m-^M2yi2 

32ir\/t / 
[G<-

-lEJ+m+Mj+m~]P"J+ll2}, (2.14d) 

where Mj±y2 and Ej±y2 represent transitions between 
initial and final states of parity (— 1)J±1/2. 

The amplitudes defined by Eq. (2.11b) can also be 
expanded in terms of amplitudes connecting states of 

C I (2 12b") definite parity and angular momentum. Designating 
i / ' these eigenamplitudes by a^ and ft/* and using the 

helicity amplitudes of Jacob and Wick,9 we obtain 

(2.12c) G i = - E ( / + J ) ^ " ( 0 ^ , 

2M 

(t-l)(2M+Vt)\ 2M-Vt • ) • 

(2.12d) 

The relations between the ffn's and Bn's are obtained 
similarly and have been shown in Ref. 6 to be 

JFi= -l(E1+M)(Ei+M)J'4B1-Uslli+M)Bi 

G2= - | Y,{aj-(t)\:jP"j+1+(J+l)P"j_1-] 
J 

- ( 2 / + l ) a , + ( f l P " , } : 

G8+G4= -S( /+ i ) /S /+( / )PV, 

^4= - i E{«j-+(0C/i"'j-+i+(/+i)i>/O-i] 

(2.15a) 

(2.15b) 

(2.15c) 

8TT\A 

/ - l 

3*= 

2(51/2—ifcf) 

? ( ^ 2 - i l f ) / £ i+ l f \ 1 / 2 j 

•2+Af. 

/ - I 

/E1+M\1'r 
( ) -B1-Usm~M)Bi 

8T\/S \E2+M/ L 

(Bs-iB^, (2.13b) 

ff3=l- —UEl+M)(Ei+M)J,t 

8TT\/S 

-(2J+l)or(t)P"j), (2.15d) 

(5,-J3<) . (2-13a) where i" / means d/dz'Pj(zf), etc. Some useful properties 
J of the eigenamplitudes, aj^t) and ftj^t), are derived 

in the Appendix. Equations (2.15) are valid for all z' 
in Ei where Ei is the largest ellipse in the complex 
z' plane with foci at ± 1 in the interior of which Gi is 
an analytic function of z'.10 

Superscripts (+ , —, 0) denoting the isospin character 
of the quantities in Eqs. (2.11), (2.12), (2.13), (2.14), 
and (2.15) have been omitted for simplicity. 

Chew, Goldberger, Low, and Nambu6 have obtained 
crossing relations for the Mandelstam amplitudes. 

X 
-2(sl^-M) 

. t-1 
Bi—B%-\-J**], (2.13c) 

9 M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959). 
10 E. T. Whittaker and G. N. Watson, Modern Analysis (Cam

bridge University Press, New^York, 1952). 

file:///xWsxW0
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They are 
Bn^(stu) = en^Bn^(uts), (2.16) 

where en
(i):= + l for i=(0,+) and n=l, 2, 4 or for 

i=(—) and n=3, and otherwise en
{i)= — 1. These 

amplitudes are related in channel I to the amplitudes 
leading to final states of total isospin J and f as follows: 

^n ( + ) = P n 1 / 2 + P n 3 / 2 , (2.17a) 

£ » M = 4 £ » 1 / 2 - W 2 , (2.17b) 

and 5n
( 0 ) leads only to states of isospin J. 

III. COMPLEX ANGULAR MOMENTUM 

The steps leading to a Regge description have been 
discussed extensively for the case of TTN and NN scatter
ing.11-13 Since the situation here is essentially the same, 
we omit certain aspects of these considerations. 

Froissart14 has indicated the appropriate way to 
continue the eigenamplitudes into the complex / plane. 
Using the orthogonality properties of the Legendre 
polynomials and Eqs. (2.15), we find for physical / 

AT= (2/+1)- 1 / dz(PJ+1-PJ-1)G1, (3.1a) 

1 pj+=(2J+l)-1 dz(Pj+i-Pj-iXG,+Gi), (3.1b) 

( 2 / + l ) - i /-i 
aj+±aj-= / ( G 4 ± G . ) [ ( / + l ) i V - i 

+JPJ+lM2J+l)Pjldz, (3.1c) 

where we have written Pj for Pj{z) and G„ for G„(t,z). 
Equations (2.12) are inverted and substituted into 
Eqs. (3.1). Then we use the iV-subtracted form of the 
Mandelstam representation for the Bn's: 

N-i y-z)" r 
Bn=T. pk"(t)zk+ / 

fc=o x J z 

(-z)N f» Bn'(-z't)dz' 

zo z'»(z'+z) 

•f 
' Bn

u(zft)dzf 

+ - / , (3.2) 

where Bn
8'u is the discontinuity of Bn across the s, u 

cut, z0=-E/p, and k\pk
n(t) = [(dk/dzk)Bn(tz)~]z^. In

terchanging the order of integrations, we obtain for 
J>N+1 

(t-4:M2)1/2 /.00 

• / dz' 
'Jzo 8^(27+1) „,0 

Xtb«(tz')-(-iyb°(t,-z')l 

XlQj+i-Qj-iJ, (3.3a) 

" V . Singh, Phys. Rev. 129, 1889 (1963). 
12 S. C. Frautschi, M. Gell-Mann, and F. Zachariasen, Phys. 

Rev. 126, 2204 (1962). 
13 Y. Hara, Progr. Theoret. Phys. (Kyoto) 28, 1048 (1962). 
" M. Froissart, Phys. Rev. 123, 1053 (1961). 

(t-l) 
PJ+ = / dz' 

aj+±af-= — 

8x^(27+1) ,.„ 

X [ 5 i « ( f e ' ) - ( - l ) / M * , - * / ) ] 

XLQj+i-Qj-ii; (3.3b) 

(< - l ) (2 /+ l ) - 1 r« 
dz' 

8x 2 / / ( /+ l ) ,*0 

X{±ta±»(tz')+(-l)Ja±°(t,-z')j2J+l)Qj 

XI(.J+VQJ-I+JQJ+I1} , (3.3c) 

where 

a±
w's(teO = 2M[51

w>s(feO-M^4w,s(fe/)]+J^4w'fi(fe/) 
±[t(t-4M2)J'*Bz"'*(tz'), (3.3d) 

bu's(tz,) = (t-l)lB1
u's(tz,)-MB^s(tz;)'] 

+2tB2">°(tz'), (3.3e) 

and the Q/s are Legendre functions of the second kind 
of argument z'. 

We now introduce the even and odd eigenamplitudes11 

which will be used in the continuation to complex / . 
We let @j,e

+ represent Eq. (3.3b) for even / and ^ , 0
+ 

represent Eq. (3.3b) for odd / . This removes the (— 1)J 

factor, aj^, aj^, 0j,e~, and /3Ji0~ are defined similarly. 
When we wish to indicate explicitly the isospin nature 
of the eigenamplitudes, we write Pj,e

±,{i\ where 
i= (+ , —, 0) and similarly for the others. 

We define &*•<«(//), 0o±Ai)(Jl),ae^^(Jt), and 
a0

±Ai)(Jt) to be the continuations of /3Jte±. («(/), 
Pj,o±Ai)(t), aJt9±>W(t), and aj,0

±Ai)(t), respectively into 
the complex / plane.15 Although Eqs. (3.3) have been 
derived for physical / and J>N+1, they will represent 
the continued functions, Pe.oHJt) and de^iJt), for all 
values of / and t for which the integrals converge. 
Accordingly, Pe.oHJt) and ^^(Jt) will be holomorphic 
in / for these values of / and /, except possibly at the 
zeros of the denominators of Eqs. (3.3). They are also 
asymptotically bounded in this domain, as can be seen 
by using the relation16 

•1/2 [> - (* ' - i ) i / 2y , (3.4) 

for z'<\ and real. What is lacking at this point is a 
knowledge of the extent of the meromorphy domain for 
the eigenamplitudes and their properties in this domain. 
For the scattering of two spinless particles of equal mass, 
Mandelstam has made considerable progress in this 
direction, basing his discussion on the existence, for all 

16 See K. Bardakci, Phys. Rev. 127, 1832 (1962) and E. J. 
Squires, Nuovo Cimento 25, 242 (1962). 

16A. Erdelyi et at., in Higher Transcendental Functions, 
(McGraw-Hill Book Company, Inc., New York, 1953), Vol. 1. 
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/ , of the left-hand discontinuity in / of the partial-wave 
amplitudes.17 

I t is not the purpose of this paper to improve on the 
status of such problems. Instead, we assume that the 
eigenamplitudes have the desired properties (asymp
totic boundedness and analyticity, except for Regge 
poles, to the right of some line R e / = — X, X>0) and 
perform the standard operations necessary to convert 
Eqs. (2.13) into sums over Regge pole contributions plus 
background terms (line integrals). For instance, we 
find that Bi(st) can be written as 

5 i = 1 6 i r ^ - l ) - 1 ( - i ) E ( 2 J r + l ) i 8 / + P , j ( 2 / ) , (3.5a) 
J 

B,= lfoii^'tt-O-1 Z(Z/+l)/^+(i) 
a,J 

X [ P V ( s ' ) - ^ ( - s ' ) ] , (3.5b) 

where a is the signature and %[P'j(z') — aP'j(—z')~] is a 
projection operator for even / if a is even (<r= + l) and 
for odd / if a is odd. This sum can be transformed into 
a contour integral in the complex / plane using Cauchy's 
theorem: 

V* * rdJ(2J+l) 
Bx=16ir E — <l> 

2 ( 1 - / ) <r 2iJ c sinTr/ 

X(t.+(J)h[P'jW)-*P'j(-*Y\, (3-6) 

where C is a path encircling the real axis from 7 = 1 
to J= oo. Deforming the path, we obtain 

BX=16T~ 
Vt 

E T0-Ra(ff)[_2a(a) + 1'] 
2 ( 1 - / ) *•«<*> 

xCp,-""')-'f'-'-("')]
+(^grd).»») 

2sin7ra(o-) \ t e r m / 
where a(a) and Ra(<r) are the poles and residues, re
spectively, of fi<r+(Jt). Similar expressions may be ob
tained for the other Mandelstam amplitudes. The next 
step is to let zr and s approach infinity for fixed /. I t is 
important to realize that this could not have been done 
in Eq. (3.5) or (3.6). These equations are valid only for 
z' within one of the ellipses denoted by £,-. In fact, the 
contribution along the infinite semicircle which has been 
dropped in going from Eq. (3.6) to Eq. (3.7) does not 
vanish for large z' as it does for zf<\. Equation (3.7), 
however, is valid for arbitrarily large z' if the Regge 
trajectories are bounded. This follows from recognizing 
that the background term is the product of a z~x factor 
and a Fourier integral of the form 

d(ImJ)f{-\+i Im/ , / ) exp[i ImJ Ins] , (3.8) 

FIG. 1. Trajectories 
for the strongly inter
acting process, a-\-b —> 
c+d. 

•(ST.) 

(ST.) 

which vanishes as z—-> oo by the Riemann-Lebesgue 
theorem if a path, Re /=—X, is chosen such that the 
integrand is bounded along it. 

We mention in passing, that Eq. (3.6) is really not 
correct for t<4 since the Regge poles migrate to the 
real axis for t below threshold. The contour C may 
therefore enclose some Regge poles as well as the poles 
of CSC(irJ). However, these are easily included, and 
the form of Eq. (3.7) is not altered as long as all the 
Regge poles with Rea>— X are included in the 
summation. 

IV. REGGE TRAJECTORIES IN CHANNEL II 

In nonrelativistic Schrodinger theory, the angular 
momentum poles of an eigenamplitude have a simple 
physical interpretation; if Rea(E) passes through zero 
or a positive integer at an energy E=E'i then there 
exists a solution to Schrodinger's equation of energy 
E' which describes a bound state if Ef<0 and a shadow 
state18 if Er>0. To make this interpretation applicable 
to relativistic strong interaction physics, the concept of 
a bound state or resonance is defined in the conventional 
manner. Figure 1 illustrates this definition; X can be 
any composite particle or resonance whose quantum 
numbers are such that B, I, Py G, C,19 S, and charge are 
conserved at each vertex. This definition is readily 
extended to include reactions in which more than one 
type of interaction participates. For example, both 
strong and electromagnetic interactions are present in 
the photoproduction of pions and Fig. 2 illustrates the 
definition used in this case; at the Xbc vertex, B, / , P, 
G, C, S, and charge are conserved as before, but at the 

17 S. Mandelstam, Ann. Phys. (N. Y.) 21, 302 (1963). 

18 T. Regge, (see Ref. 2). Although the shadow state, real E and 
complex / , is not identical to the resonant states of Breit and 
Wigner, real / and complex E, they may be identified for our pur
poses since they both induce a resonance type behavior into the 
physical eigenamplitudes. 

19 The eigenvalue C of the charge conjugation operator is an 
appropriate quantum number only for neutral states. 
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FIG. 2. Trajectories 
for the process, y-\-a —> 
b+c, involving both 
strong and electromag
netic interactions. 

•(ST. & EM.) 

abX vertex only B, P, C, S and charge need be con
served. Again, X must be a composite particle or a 
resonance. Observe that if we were doing conventional 
field theory, X would not be restricted to only these 
multiparticle states which resonate. 

For notational convenience we label the four charge 
configurations of channel I I 

7 + 7T0 —> p + p , 

7+7r°—> n-{~n, 

7+7r~—> n-\rp, 
and 

7 + 7T+—^ + ^ 

as 11(1), 11(2), 11(3), and 11(4), respectively. Four 
of the eigenamplitudes denned in Sec. I I represent 
transitions between states of negative parity and the 
other four between states of positive parity. In the 
Appendix it is shown that the latter are ae

+, &+ , a0~, 
and ftf". These can be eliminated from our consideration 
for the following reasons. The ABC,20 KxKh

21 and the 
two vacuum trajectories are the only known B=S=0 
trajectories of even parity. They are not permitted in 
reactions 11(1) and 11(2) because of conservation of C 
and in reactions 11(3) and 11(4) because of conservation 
of charge. 

The four remaining eigenamplitudes corresponding 
to negative parity transitions are a0

+, £o+, #<T, and /?«f\ 
As before, we must have B=S=0. At present there 
are only five known odd-parity trajectories with 
B = S=0, the p, </>,22 o>, T and r\ trajectories. The latter 
is excluded for the same reasons as were the even parity 
trajectories. Since the p, <£, and co trajectories have odd 
signature (spin 1), the only trajectory available to ar 
and $r is the w trajectory (even signature); and it is 

20 A. Abashian, N. E. Booth, and K. M. Crowe, Phys. Rev. 
Letters 5, 258 (1960); 7, 35 (1961) and Rev. Mod. Phys. 33, 393 
(1961). 

21 G. Alexander, O. Dahl, L. Jacobs, G. Kalbfleisch, D. Miller, 
et aL, Phys. Rev. Letters 9, 460 (1962). 

22 L. Bertanza, V. Brisson, P. L. Connolly, E. L. Hart, I. S. 
Mittra et al.} Phys. Rev. Letters 9, 180 (1962). 

not found in ar because in 1= 1 transitions ar leads 
to final states with even G parity (see Appendix). 
Although G parity is not conserved in general, it is 
conserved at the XNN vertex, as shown in Fig. 2. 
Furthermore, the pion trajectory is not present in 11(1) 
and 11(2) because of conservation of C. In fact, /3<r is 
identically zero in these reactions for the same reason. 
This means that &~' (+ ) and /3e~^0) must vanish [see 
Eqs. (5.11)]. The two odd amplitudes a0

+'(i) and 0O
+ 'W 

share the same Regge trajectories23 but their residues 
may differ. For reactions 11(1) and 11(2), the p, <j>, and 
co trajectories are allowed. However, reactions 11(3) and 
11(4) involve pure 1=1 final states so that the o> and <j> 
trajectories (1=0) are forbidden. 

If we let » = 1 in Eq. (2.16) and use Eq. (2.12a), 
we obtain 

G^-\stu)+G^-\stu) = - [G^\uts)+G^(uts)~]. 

Since interchanging s and u in channel I I is equivalent to 
replacing z' by — z' and since Pj{—zf) = (— 1) J+lP/(zf), 
it is evident that a0

+,(~) and ^ 0
+ ' ( - ) must vanish. We 

conclude then that the p trajectory occurs in a0
+,(0) and 

/30
+ , ( 0 ) , whereas the co and <f> trajectories are found in 

a0
+,(+) and /?0

+ , ( + ) . The p trajectory is not allowed in 
ao+,(+) or iS0

+ '(+) because these transitions lead only to 
final states with zero isospin.5 

V. ASYMPTOTIC SYMMETRIES 

A. Forward Scattering 

In Part A of this section, we investigate the asymp
totic behavior of the channel I scattering amplitudes 
in the forward direction. For unpolarized nucleons and 
photons the relation between these amplitudes and the 
differential cross section is 

(da/dQ) = (q/k){\$1\>+\$2\* 
-2a;ReSFi*gj,+ (l-«»)[i|ff8 |»+§|ff4 |2 

+Re(^i*^4+^2*^3+^^*^4)]}. (5.1) 

If we fix z at one, this reduces to (da/dQ) = (q/k) \ A112, 
where Ai= S i+S^, but then 

2(s-M^2+(t-lWt (const) 
z'= >1 (5.2) 

- ( / - l ) ( / - 4 i f 2 ) 1 / 2 —« s 

and the approximation, Pa'(z') —> z'"-1, which leads to 
the usual Regge equations, cannot be used. Therefore, 
we consider fixed t in which case zr > (l/M)s(—t)112 

as desired, but we now are approaching the forward 
direction of channel I only asymptotically: 

(t-lWs s-M2+l It 
z=- -+ > 1 + - . (5.3) 

q(s-M2) 2q^/s s 

J. M. Charap and E. J. Squires, Phys. Rev. 127, 1387 (1962). 
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Therefore, all the terms in Eq. (5.1) must be included 
(not just Ai). 

For this purpose it is convenient to rewrite Eq. (5.1) 
in the form 

s(dv/dt) > -4TT{ Mx| 2 -8 / 2 (^ ) - 2 R e S * * ^ 

- 2 / ( J ) - 1 [ 2 Re(5i*S2+ 9ri*3r4+3ri*9r8)+ I SFs+^l2]} , 

(5.4) 

where Eq. (5.3) and (da/dt) 7 ^ - 4 T T ^ ) - 1 ( ^ / ^ ) have 
been used. We have seen in Sec. I l l that the Regge 
contributions arising in channel I I may be continued by 
way of the Mandelstam amplitudes into the physical 
region of channel I. This enables us to express each 
term of Eq. (5.4) as a function of the p, <t>, co, and T 
Regge poles since the SVs are given in terms of the 
Bn's by Eqs. (2.13). 

Consider the first term of Eq. (5.4), for instance. 
Although it is related to the Bn's in a complicated 
(algebraically) manner, considerable simplification re
sults if we confine our attention to large s. Using the 
expansion l(E1+M)(E2+M)J^ 7 ^ q-^? W* and 
Eqs. (2.13a) and (2.13b), we have for fixed t, 

Ald) > 1 fc ( i r ) -V^(25 1 W-Jf5 4
( < ) ) , (5.5) 

8-»00 

where only the largest term has been retained. The 
relative magnitude of the Bn's is established by consult
ing Eqs. (2.12) and (2.15). For example, Bz is propor
tional to G2 which behaves as sa~2 for large s since we 
do not know of any Regge trajectories which belong to 
a~(Jt). Similarly, it is seen that the other Bn's are of the 
order s a _ 1 for large s. We temporarily ignore the B4 term 
of Eq. (5.5) in order to simplify the presentation to 
follow. If we let s tend to infinity for fixed t in Eq. (3.7), 

2B^\st) > 16TT E V ^ t f a o ) * " 0 ' 0 - 1 , (5.6a) 

and substitute this into Eq. (5.5), we obtain 

A^(st) • L v(i)M^ao)s^t)~m} (5.6b) 

where %(a) is the signature factor 2£(a) sin7ra= 1 —e~i7r0!, 
7j(a) is the residue function 

7 r 1 / 2 ( 2 ^ / ) a ~ 1 ^ ( i ) ( « ) = = - ^ 1 / 2 ( ^ l ) " 1 ^ « ( i ) ( 2 a + l ) 2 a 

Xsin(7ra) r ( -a ) r (G:+i ) , (5.6c) 

Raw(t) i s t h e residue of &*-•<»(Jt) at J=a(t), and T(x) 
is a gamma function. We have omitted the sum over 
ae because no physical manifestations of these tra
jectories have been observed. Furthermore, the sum 
over ao reduces to at most two terms for each value of 
(i) if only the trajectories corresponding to the known 
"elementary" particles and resonances are included: 

4i<+> > i?*(0^a*( ')-1/2+i7«(0f^a, , (O"1/S (5.7a) 

4 i ( 0 ) > i7p(Ofp*tt'(<)-1/2, (5.7b) 

and ^4i(_) vanishes, i.e., there are no trajectories to con
tribute to ^4i ( - ) ; the pion trajectory contributes only 
to ^3 and $4. Equations (5.7) are changed by the in
clusion of the B± term only to the extent that the rj's 
will be different. In particular, Ra in Eq. (5.6c) will 
be replaced by ( 4 i l f 2 - / ) - 1 [ ( 2 ^ 2 - 0 ^ a + l f W 1 / 2 o : ^ a ' ] , 
where Ra' is the residue of a+ at J=a(t). If the t de
pendence of Ra and Ra

r is the same near t=0, then this 
replacement is simply \Ra for small L 

We now consider the high-energy contributions 
coming from the other terms of Eq. (5.4). We begin by 
using Eq. (2.13) to obtain 

Re(3 ri*9 :2+^*^+5 :2*3 :3) > 2s ReAz*As, (5.8a) 
s-*oo 

ISVf^l2 >s\Ai\\ (5.8b) 
8 - *00 

Re({F,*ff4) >-\sA2\*, (5.8c) 
s->oo 

where 

16w(t-l)A2=(sy^B2f 

A4= (2M)~1(A1+2AZ-4:MU2), 
and 

16x^3= (sy^i-Bx+MB^). 

The latter is not essentially different from Ah and, in 
fact, Eqs. (5.7) may be used for A 3 if new residue func
tions are substituted in place of the Vs. These new 
functions, t]a

f, should defined by Eq. (5.6c) with Ra 

replaced by ±(m2-t)-lt2M(tyt2aRa'-tRa% The re
maining amplitude A 2 may be conveniently expressed 
as 

2A2= -s^(t- l ) - 1 ( / -41T 2 ) - 1 / 2 G 1 +rM3, (5.9) 

where Eq. (2.12b) has been used. Since /3 j - ' ( + ' 0 ) = 0 and 
^43

(_) vanishes for large s, Eq. (5.9) implies that 
2M2

( + '0 ) = i 3 ( + ' 0 ) and 

A2i~) > ^ ( O k J " * ^ - 1 ' 2 , (5.10) 
s->oo 

where f]v is given by Eq. (5.6c) with Ra replaced by 
\R«{t)[t{t-±M*)Ji\ 

We define the isospin amplitudes An
l, An

2, An
3, and 

An
A to represent the reactions y+p —>TT°+P, y+n-^ 

Tr°-{-n, 7 + ^ —» Tr+-\-n, and y-\-n —» ir~-\-p, respectively. 
We designate these in general by An

k. I t has been 
shown in Ref. (6) that these amplitudes are related to 
the An

{i) amplitudes as follows: 

Anl*=Anm±An<*\ (5.11a) 

An*>*=^2(An™±An^), (5.11b) 

where the upper sign in Eq. (5.11a) is for An1 and in 
Eq. (5.11b), for An

2, etc. In this notation the differential 
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cross section is given asymptotically by 

s(da/dt)k > -^{{A^-ltlA^ 
s->oo 

-8 / 2 | ^2 f c | 2 -4 /Re[^3^2 ; k )*]} . (5.12) 

For k=l this describes y+p~->ir0+p, etc. From Eqs. 
(5.7), (5.10), and (5.11) we see that (dcr/di)k depends 
only on the p and w trajectories for k = 3, 4, whereas 
for k— 1, 2 it depends on the p, <j>, and co trajectories. Its 
explicit dependence on these trajectories is obtained by 
substituting Eq. (5.7), Eq. (5.10), and the corresponding 
equations for Az and A2

i+>0) into Eq. (5.12): 

( - ) —>F,M)(-) 
\dt/i,2 •-00 \sQ/ 

, s \ 2(a,—1) 

+ £ F , ( f l ( - ) , (5.13a) 
r=p,<f>,oi \SQ/ 

( - ) —>2 Fp(/)(-) +F,(0(-J 
\ * / 8 , 4 S_>0° L \S0/ \S0/ 

± F p ' ( / ) w J' (5'13b) 

where the upper sign is for (da/dt)i in Eq. (5.13a) and 
for (da/dt)s in Eq. (5.13b), etc. The F(t)'s are defined by 
the above equations and are functions of a, 7]a, yd, £a, 
and t\ for example, FT(0 = 32ir/(/+Jf2)|i7,ST| W ^ " 1 ^ 
They are a measure of the strength of the "coupling of 
the trajectories" at the two vertexes of Fig. 1 and may 
be determined empirically. 

B. Backward Scattering 

The high-energy scattering in the backward direction 
is controlled by the Regge trajectories of the same 
channel (or alternatively by those in channel III). We 
do not present a separate discussion of these trajectories 
as was done in Sec. IV for the trajectories of channel II 
since the situation is much simpler in this case. The 
trajectories in channel I are labeled by the quantum 
numbers, B=l, 5=0 , 7 = | , f, and P = ± l . At present 
there are only three such trajectories. If we characterize 
them by their first member, they may be called the 
nucleon trajectory, the 3, 3 resonance trajectory, and 
the trajectory for the 600-MeV irp resonance. They are 
discussed in detail by Singh et al.11 

- To introduce these trajectories into our description 
of backward scattering, it is necessary to carry out the 
same kind of manipulations discussed in part A of this 
section. We assume that the even and odd eigenampli-

tudes for channel I [introduced in Eqs. (2.14)] have the 
appropriate properties for complex / , write Eqs. (2.14) 
as contour integrals, and deform the path to allow the 
Regge pole contributions to enter. If we let u tend to 
infinity and keep only the largest term, we find that 
#i and u%z behave as uaN(8)~lf2, while 5^ and u$i behave 
as uas3(s)~1/2, where aN and a33 are the nucleon and 
3,3 resonance trajectories, respectively. When Eqs. 
(2.13) are inverted it is found that 5^ and ^4 are always 
multiplied by a factor of u compared to SFi and fo. In 
particular, we obtain the following results for fixed s: 

Bn<+>(su) > Nn^(s)^Nua^s>-^ 

+ 7V+>(^33^<*>-1'2, (5.14a) 

Bn^{su) • V W i ^ w - 1 " , (5.14b) 
w-*oo 

+ Tn^(s)^u«^-u*, (5.14c) 

where Nn
(i)(s) a n d 2V°($) are the residue functions for 

the nucleon and the 3,3 trajectories, respectively. Since 
the 3,3 resonance has / = § , the Bn

(0) amplitude does 
not contain a contribution from the 3,3 trajectory [see 
Eqs. (2.17)]. We now interchange s and u in Eqs. (5.14) 
and use the crossing relations, Eq. (2.16), to obtain 
expressions for the Mandelstam amplitudes Bn

w(su) 
evaluated in the physical region of channel I, e.g., 

Bnw(su) > en^NnW(u)!iNs<*x^-v\ (5.15) 
s-*oo 

The combinations of these isospin amplitudes appro
priate for the description of the four charge states of 
channel I are given by Eqs. (5.11), and we define the 
amplitudes Bn

k for k= 1, 2, 3, 4 in accordance with the 
definitions of An

h. Expressing the Bn
k{su)^ in terms of 

the nucleon and 3,3 trajectories, we have 

8->00 

+ rn<+)f»^"«-1'2} (5.16a) 
and 

s->oo 

where the upper sign is for Bn
l in Eq. (5.16a) and for 

Br? in Eq. (5.16b). For large s and fixed u, z behaves 
as -l-2u/s, Bz^(su) tends to ~iB4

(i)(su), and 
Eq. (5.1) becomes 

/ M 1 ^ Cn 
[ — ) — > — R e £ i W ) * + £ — \Bn

k\2, (5.17) 
\du/k

 s-*°° Sirs «=i s 

where 16wCi = u, 8TC2= — U, C3 = 0, and 64TTC4 = i f 4+u2. 
Substituting Eqs. (5.16) into Eq. (5.17), we find that 
the differential cross sections describing backward scat-
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tering in the four charge configurations are given by 

/d<j\ / j \ 2 L « 8 8 - l ] / A 

(—I >F*88(«)(~) +F^N(u)l-) 
\du/k

 8^ \s0/ \so' 

ocN+oczz— 2 

So/ 

/ S \ 2[*N— 1] 

+ / * * ( * ) ( - ) , (5.18) 

where F^(u) = FBd
2(u) and Fz-,

z(u)=F^{u), 

C. Discussion 

On the basis of the preceding remarks we are now 
able to make some observations regarding the high-
energy symmetries exhibited by the scattering ampli
tudes for the various charge states of channel I. If the 
dominance of the p over the ir trajectory is assumed for 
small /, it is clear that for the forward direction the 
asymptotic equality of the differential cross sections for 
the photoproduction of pions of positive and negative 
charge is predicted. More specifically, 

(d& 

,) .~-w.--ft / s \ 2[«p(0-l] 

2Fp(/)(-J . (5.19) 

The value of s at which this effect should be noticed 
depends, among other things, on the relative magnitude 
of Fp(t) and FTp(t), and there is some indication that 
the coupling of the p to NN states is small24 (compared 
to that of the co for instance). For the photoproduction 
of neutral pions, y+p —-> w0+p and y+n —» w°+n, we 
have two competing trajectories of comparable magni
tude, the p and w, and possibly a third, the 0, and we 
expect this to delay [relative to the advent of Eq. (5.19)] 
the appearance of a corresponding asymptotic sym
metry for this case unless Fwp(t) is considerably larger 
than Fpw{t) [and perhaps F<f>p(t)~]. However, if one of 
these two trajectories is even slightly larger than the 
other, it is necessary that the differential cross sections 
for these reactions eventually display a symmetry of 
this type. 

For scattering in the backward direction, the existence 
of symmetries such as this depends on the dominance of 
the 3,3 trajectory over the nucleon trajectory. If this is 
assumed, the following asymptotic equalities are ob
tained for small u: 

/d<T\ /d(T\ / S\2[azz(u)-1] 

(_) >(_) >F^(u)(-) (5.20a) 
\du/i s^°° \du/2

 s_>0° W 

and 

/d&\ /dcr\ / j\2[«8s(u)-i] 
( — ) >( — ) > F»8»(«)( ~ . (5.20b) 
\du/z s-"°° \duU s_>0° \W 

24 S. D. Drell, in Proceedings of the 1962 International Conference 
on High-Energy Physics, CERN (CERN, Geneva, 1962), p. 897. 

Although the backward scattering in all four charge 
states is controlled by the same Regge trajectory, the 
asymptotic equality among the differential cross sec
tions (for backward scattering) is incomplete in that 
Fzz1{u)9^Fzzz{u). Contrasting this with the situation 
which prevails for forward scattering, we see that the 
dominance of the p trajectory in all four charge states 
would imply the asymptotic equality in the forward 
direction of all four differential cross sections (apart 
from a factor of 2). 

Equations (5.19) and (5.20) may be regarded as the 
generalization of the Pomeranchuk relations to the 
photoproduction of pions (in the sense mentioned in 
the Introduction). However, this is not the canonical 
generalization, which relates to the amplitudes for the 
direct and crossed channels. Instead, the individual 
charge states are related, and an asymptotic version of 
charge independence for forward and backward scatter
ing is obtained (except possibly for the forward produc
tion of neutral pions). 

In conclusion, we remark that the results obtained in 
this paper pertaining to the photoproduction of neutral 
pions in the forward direction need no essential modifica
tion for application to the photoproduction of rj mesons. 
There is considerable difference however between the 
photoproduction of 7r° and rj mesons in the backward 
direction. This can be understood as follows: With the 
exception of isospin and G parity, the TT and rj mesons 
are described by the same quantum numbers. The same 
Regge trajectories will contribute to the forward pro
duction of rfs as to the forward production of 7r°'s since 
these trajectories_come from channel II , y+rj —> N+N 
or y+w0 —> N+N, and / and G are not conserved at the 
vertices involving the r\ and T°, y-qX and y7r°X. On the 
other hand, the trajectories which contribute to back
ward scattering come from the channel, y+N —> TT°+N 
or y+N —> v+N, and / and G are now conserved at the 
vertexes containing the 77 and TT0. In particular, this 
eliminates the isospin-f trajectories (which are allowed 
in backward ir° production) from the description of 
backward 17 production. This means that the differential 
cross sections for the two processes, y+N —> w°+N 
and y+N —-> rj+N will display the same energy de
pendence in the forward direction (for large s and fixed 
/), whereas the differential cross section for T° production 
will have a stronger energy dependence in the backward 
direction than the one for backward production of ^'s 
(for large s and fixed u). 
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APPENDIX 

The eigenamplitudes aj^ and fi^ represent transi
tions between initial and final states of angular mo
mentum / . The final states are also eigenstates of G, Py 
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and C (the latter only for states of zero charge). Their 
eigenvalues are obtained below. 

The eigenamplitudes are denned in Ref. 5 to be 

(2pk'y/V(J+l)aj±=Tj(+, - , 1)±ZV(-, + , 1), 

(2pk/y/2U(J+i)J/Vj±=TJ(+, + , i ) ± r , ( - , - , i ) , 

where 

TJI\(N)XN)X7)>(HN)MN),J\\T\ |/,X(7),XW>, 

\(A) is thehelicity of particle^, and we write Tj(+, + , 1) 
rather than ?V(§,f ,1), etc. We now express the nucleon, 
antinucleon states of definite helicity \JM\(N)\(N)) in 
terms of the states \JMLS), where L is the relative 
orbital momenta and S is the total spin. Using Eq. (B5) 
of Ref. 9, we find that 

tf\J,M,±,±) 
( J \ m 

= ± | / , l f , / , 0>+ \J,M, J-1,1) 
\2J+1/ 

>Z\J,M,±,^) 

- ( — ) \J,M,J+1,1), 

/ / - I N 1 ' 2 

= =F\J,M,J,l)+( ) \J,M,J-1,1) 
\2/+l/ 

/ j - i y 2 

^2/+ 
//+2y/2 

G 
C 

Regge 
t r a j . 

TABLE I. Odd-

ao+,/3o+ 

II(fe)a HO*) 

0 1 1 
- 1 1 1 
- 1 - 1 X 

°>,<t> p P 

parity transition amplitudes. 

a6~ 
b II(£)a I I ( j ) b 

0 1 1 
- 1 1 1 

- 1 - 1 X 

none none 

fir 
II(k)* 

0 1 
1 - 1 
1 1 

none 

H(i)b 

1 
- 1 
X 

7T 

+ W "•"•'+I-,>-

a The index k may be 1 or 2 in the symbol II(k). 
b The index j may be 3 or 4 in the symbol 110'). 

We make the definitions | aj±) = \ JM-\— )± \ JM—|-) 
and |/5J

±>= \JM++)±\JM ). Since P=( - l )*** , 
C=(-1)L+S if applicable, and G=(-1) L + ' S + J for NN 
states, it is clear that these final states, | aj*) and | ft/-*), 
are eigenstates of P and G with eigenvalues as follows: 

P | a , ± > = ± ( - l ) ' | a , ± > , 

G |a ,±>=±(- l ) '+ ' | a ,±> , 

G|fo±>=(-1)'+'|0,±>. 

For the neutral reactions, 11(1) and 11(2), they are 
also eigenstates of C: 

C\aj±)=M-l)J\aj±), 

C|fo±)=(-1)-MA,±>. 

These results are summarized in Table I for the tran
sition amplitudes leading to final states with odd parity. 
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